Skip to main content

Coronavirus (COVID-19): Visitor Restrictions, Resources, and Updates

Explore URMC
menu
URMC / Labs / Goldman Lab / News

 

News

20202019201820172016

Animal Study Shows Human Brain Cells Repair Damage in Multiple Sclerosis

Tuesday, May 19, 2020

A new study shows that when specific human brain cells are transplanted into animal models of multiple sclerosis and other white matter diseases, the cells repair damage and restore function.  The study provides one of the final pieces of scientific evidence necessary to advance this treatment strategy to clinical trials.

“These findings demonstrate that through the transplantation of human glial cells, we can effectively achieve remyelination in the adult brain, ” Steve Goldman, M.D., Ph.D., professor of Neurology and Neuroscience at the University of Rochester Medical Center (URMC), co-director of the Center for Translational Neuromedicine, and lead author of the study.  “These findings have significant therapeutics implications and represent a proof-of-concept for future clinical trials for multiple sclerosis and potential other neurodegenerative diseases.”

The findings, which appear in the journal Cell Reports, are the culmination of more than 15 years of research at URMC understanding support cells found in the brain called glia, how the cells develop and function, and their role in neurological disorders. 

Goldman’s lab has developed techniques to manipulate the chemical signaling of embryonic and induced pluripotent stem cells to create glia.  A subtype of these, called glial progenitor cells, gives rise to the brain’s main support cells, astrocytes and oligodendrocytes, which play important roles in the health and signaling function of nerve cells. 

Read More: Animal Study Shows Human Brain Cells Repair Damage in Multiple Sclerosis