Skip to main content

Coronavirus (COVID-19): Visitor Restrictions, Resources, and Updates

Explore URMC
menu

News

20202019201820172016

BMG Faculty, Douglas Portman, Ph.D. Leads Study: Biology Blurs Line Between Sexes, Behaviors

Monday, August 10, 2020

 

A new study, from the journal Current Biology, spotlights research from Biomedical Genetics Professor Douglas Portman, Ph.D. Titled Dynamic, Non-binary Specification of Sexual State in the C. elegans Nervous System, this research “identifies a genetic switch in brain cells that can toggle between sex-specific states when necessary, findings that question the idea of sex as a fixed property”. Further information can be found on the URMC's Del Monte Institute’s webpage: NeURoscience.

Xiaolu Wei awarded the University of Rochester Agnes and George Messersmith Dissertation Fellowship for 2020-2021!

Tuesday, June 9, 2020

Xiaolu WeiCongratulations to Xiaolu Wei in the GDSC Program on receiving this prestigious award! Xiaolu’s work in the Larracuente Lab combines genomic, and molecular techniques to gain insight into how large blocks of repetitive DNA called satellites are regulated in the germline. Satellite DNAs are abundant in genomes but their functions are unknown because their repetitive nature makes them extremely difficult to study. The little that we know suggest that they have important roles in chromosome segregation and in genome evolution, and are often associated with human diseases and speciation. Xiaolu is taking a two-pronged approach to studying satellite DNA regulation. First, she is asking broad questions about how satellites are regulated at the transcriptional and chromatin level during gametogenesis. Second, she is studying the molecular mechanism of a selfish meiotic drive system in Drosophila melanogaster males called Segregation Distorter (SD). In this system, SD kills sperm that carry a particular satellite DNA, through a chromatin condensation defect. She aims to use this system to gain insight into satellite regulation in the male germline.

Researchers Find New Leukemia Genes using CRISPR Technology

Monday, April 20, 2020

Using the most advanced tools available, scientists discovered several novel genes not known to be involved in blood cancers, and used the powerful new data to paint a clearer map for how aggressive leukemia arises and grows, according to an article published in Nature Cancer.

Jeevisha Bajaj, Ph.D., assistant professor of Biomedical Genetics at the University of Rochester Medical Center and a researcher at the Wilmot Cancer Institute, is the lead author of the study. Bajaj conducted the research while she was a project scientist in the laboratory of Tannishtha Reya Ph.D., professor of Pharmacology and Medicine at the University of California, San Diego School of Medicine, and senior author of the study.

The paper points to several significant discoveries:

  • It unveiled a new gene, Staufen 2 (Stau2), that regulates and drives the molecular programs for leukemia stem cells, the cells responsible for propagating the disease and for therapy resistance. Stau2 has been previously studied in the brain and nervous system but until now was not known to have a role in cancer.
  • The team used a tool known as CRISPR, which allows scientists to edit DNA in cells and focus on large groups of genes active in a particular disease - in this case, myeloid leukemias. The paper showed that CRISPR can identify an entire class of gene mediators for leukemia, which will aid future research.
  • The team also tested its hypothesis in a mouse model designed to mimic the human experience with leukemia, as opposed to conducting studies solely in cell cultures, as several other groups had previously done.
Read More: Researchers Find New Leukemia Genes using CRISPR Technology

A Big THANK YOU to Our Graduate Student Researchers!

Thursday, April 9, 2020

As our students carry-on their work sheltered away at home, there is much food for thought to be had. But there is also an opportunity to enjoy food from our community restaurants, which provides a much needed change in pace. So we asked our GDSC program students to rank their five favorite restaurants. The results were weighted based on ranking (#1-#5), and are tabulated in the graph. Clearly we are fortunate to have a wide variety of restaurants at our finger-tips! And for many there will be new ones to try based on the list below. As one faculty put it “Wow, I only know four restaurants from this list”. Clearly – here is an opportunity to switch up our lives and also support our culinary neighbors.

This survey was part of our Graduate Student Appreciation Week, which we celebrated appropriately with restaurant gift cards from the mentors and the GDSC program to all our hard-working graduate student researchers! Thank you –Stay smart and stay well!