Skip to main content
Explore URMC

SMD Logo

menu

News

20182017201620152014 Archive

Subscribe to Neuroscience LISTSERV

Neuroscience Graduate Program Student Plays with the RPO

Tuesday, July 17, 2018

Monique Mendes and Patricia Sunwoo at Eastman Theatre

Monique and Patricia Sunwoo

July 12th, the Brighton Symphony  Orchestra, including Neuroscience Graduate Student Monique Mendes, performed with the Rochester Philharmonic Orchestra at the Kodak Hall at Eastman Theatre.  The RPO held Summer Side by Side Sessions where amature musicians rehearsed with professionals.  Monique's stand partner was Patricia Sunwoo, a critically acclaimed violoinist who joined the RPO in 2003.

The rehearsal included: Rimsky-Korsakov - Mlada: Processioin of the Nobles, Dvorak - Symphony No. 9, "New World" (2nd and 4th movements), and Williams - Raiders of the Lost Ark: Raider's March.

Brighton Sympony Orchastra at Eastman Theatre

Brighton Symphony Orchestra members and RPO Side by side guest conductor (to the right

AHA Grants Will Accelerate Search for New Stroke Therapies

Wednesday, June 27, 2018

A series of awards from the American Heart Association (AHA) to a team of researchers at the University of Rochester Medical Center (URMC) will focus on the development of new treatments to thwart the damage in the brain caused by stroke.

One of the research projects brings together experts in stroke, cardiovascular biology, platelet biology, and peptide chemistry. Marc Halterman, M.D., Ph.D., with the URMC Center for Neurotherapeutics Discovery, Scott Cameron, M.D., Ph.D., and Craig Morrell, D.V.M., Ph.D., with the URMC Aab Cardiovascular Research Institute, and Bradley Nilsson, Ph.D., with the University of Rochester Department of Chemistry will focus on the role that platelets play in acute brain injury and inflammation during stroke.

Platelets serve an important role in protecting against blood loss and repairing injured blood vessels. However, during a stroke the inflammatory properties of platelets can interfere with the restoration of blood flow once the clot in the brain is removed, particularly in micro-vessels, which can lead to permanent damage of brain tissue.

The research team will build synthetic peptides that activate platelets to study the phenomenon – which is called no-reflow – in an effort to identify specific switches within platelets that can be turned off and limit the cells’ inflammatory functions without blocking their ability to prevent bleeding.

Two AHA pre-doctoral fellowship awards Kathleen Gates and Jonathan Bartko in Halterman’s lab will support research that examines the link between an immune system response triggered by stroke in the lungs that can exacerbate damage in the brain and investigate the cellular mechanisms that determine whether or not brain cells die following stroke.

A final AHA award to the Halterman lab will seek to identify new drug targets by focusing on specific proteins activated during stroke that are suspected to play an important role in determining the survival of neurons.

Collectively, the AHA Collaborative Sciences Award, Pre-Doctoral, and Innovation awards represent $1.09 million in funding.

Read More: AHA Grants Will Accelerate Search for New Stroke Therapies

NGP Student Receives Ruth L. Kirschstein Predoctoral Individual National Research Service Award

Thursday, June 21, 2018

Photo of Rianne StowellRianne Stowell, a fourth year NGP graduate student, has been awarded a two year NIH Fellowship award (F31) for her project titled, “Noradrenergic modulation of microglial dynamics and synaptic plasticity”. Rianne works in the laboratory of Ania Majewska, Ph.D.

The purpose of the Kirschstein National Research Service Award program is to enable promising predoctoral students with potential to develop into a productive, independent research scientists, to obtain mentored research training while conducting dissertation research.

Well done Rianne!

Neuroscience Grad Student Awarded NIH Diversity Fellowship

Tuesday, June 12, 2018

Photo of Monique MendesMonique S. Mendes, a neuroscience Ph.D. student, is the first University of Rochester Medical Center (URMC) graduate student to receive a prestigious diversity award from the National Institute of Neurological Disorders in Stroke (NINDS).  Mendes works in the laboratory of Ania Majewska, Ph.D. and studies the role that the brain’s immune cells play in development, learning, and diseases like Autism.

Mendes, originally from Kingston, Jamaica, received her undergraduate degree in Biology from the University of Florida. She came to URMC in search of a robust program that focused on glial biology and a collaborative environment.  She chose the Del Monte Institute for Neuroscience to complete her thesis work due in part to Majewska’s record of mentoring students and her lab’s reputation for conducting leading research in brain development. 

Mendes has been awarded a F99/K00 NIH Blueprint Diversity Specialized Predoctoral to Postdoctoral Advancement in Neuroscience (D-SPAN) fellowship from NINDS.  The award was created to provide outstanding young neuroscientists from diverse backgrounds a pathway to develop independent research careers.  Unlike traditional graduate student fellowships, this award provides research funding for 6 years, including dissertation research and mentored postdoctoral research career development.

Read the local Jamacian Observer newspaper article.

Read More: Neuroscience Grad Student Awarded NIH Diversity Fellowship

Fourth year NGP Graduate Student Publishes in Journal of Neuroscience

Tuesday, May 29, 2018

Fourth year NGP graduate student Patrick Miller-Rhodes (Gelbard lab) has recently published a single author review in Journal of Neuroscience (Journal Club, J Neurosci. 2018 38(19):4457– 4459) tackling the fascinating and timely topic of the heterogeneity of microglial mechanisms that contribute to normal brain functions such as synaptic plasticity. In this publication, Patrick highlights a recent study by NGP alumna Rebecca Lowery (Majewska lab; Glia 65(11):1744-1761), showing that microglial CX3CR1 loss does not affect multiple forms of plasticity, to make his point that the mechanisms microglia use to support neuronal function are likely diverse and differ based on brain region and developmental stage.

Congratulations Patrick and go NGP!

Ian Dickerson awarded University seed funding

Tuesday, May 29, 2018

University Research Awards, which provide “seed” grants for promising research, have been awarded to 15 projects for 2018-19. The projects range from an analysis of the roles of prisons in the Rochester region, to a new approach to genome editing, to new initiatives for advanced materials for powerful lasers.

The funding has been increased from $500,000 to $1 million. Half of the funding comes from the President’s Fund, with the rest being matched by the various schools whose faculty members are recipients.

Ian Dickerson, associate professor of neuroscience, and Joseph Miano, professor, Aab Cardiovascular Research Institute received the funding for "Pre-clinical mouse model for atypical hemolytic uremic syndrome (aHUS)".

Read More: Ian Dickerson awarded University seed funding

URMC Researcher Featured in Academic Stories

Tuesday, May 29, 2018

Kevin Mazurek, PhD recently gave an interview for the online Academic Stories blog, entitled "Researchers Discover How to Inject Instructions into the Premotor Cortex".

"Thanks to our brain’s complex network of connections, we are able to effortlessly move through and react to the world around us. But for people with strokes or traumatic brain injuries, these connections are disrupted making some basic functions challenging. Kevin Mazurek and his mentor Marc Schieber at the University of Rochester have made a discovery with the potential to help restore neural connections in patients. They have found a way to “inject” information directly into the premotor cortex of two rhesus monkeys, bypassing the visual centres."

Academic Stories, a division of Academic Media Group, aims to inspire more people to pursue academic careers by sharing groundbreaking research and the people and places that make it possible. Academic Stories brings their stories to a larger audience in an accessible way.

Read More: URMC Researcher Featured in Academic Stories

Syd Cash, MD, PhD Delivers Elizabeth Doty Lecture

Thursday, May 24, 2018

Syd Cash speaks at Doty LectureSydney S. Cash, M.D., Ph.D. presented, "Multiscale Studies of Human Cortical Oscillations during Sleep and Cognition" for the Elizabeth Doty lecture.  Sydney comes to us from Harvard University and Massachusetts General Hospital where his research is dedicated to trying to understand normal and abnormal brain activity using multi-modal and multi-scalar approaches.

Ania Majewska and Liz Romanski introduce Syd CashThe Department of Neuroscience hosts the Elizabeth Doty Lectureship each year to honor Robert W. Doty, PhD, an esteemed member of the department, who created this neuroscience lectureship in memory of his wife and the 58 years they shared in marriage. A particular passion of Dr. Doty’s was his quest to understand the meaning of consciousness and its underlying neural basis. Each year the committee invites an accomplished neuroscientist to present a lecture that will address in some way how the workings of the mind derive from neuronal activity. The intent of the Lecture is to appeal to a wide and diverse audience to include all interested in the neural sciences – faculty, alumni, students, and other scholars.

Brain Science Suggests This Is the Best Position to Sleep In

Thursday, May 17, 2018

Sleep is critical for rest and rejuvenation. A human being will actually die of sleep deprivation before starvation--it takes about two weeks to starve, but only 10 days to die if you go without sleep.

The CDC has also classified insufficient sleep as a public health concern. Those who don't get enough sleep are more likely to suffer from chronic diseases that include hypertension, diabetes, depression, obesity, and cancer.

It's thus vital to get enough shuteye, but it turns out your sleep position also has a significant impact on the quality of rest you get.

In addition to regulating one's appetite, mood, and libido, neuroscientists assert that sleep reenergizes the body's cells, aids in memory and new learning, and clears waste from the brain.

That last one is particularly important. Similar to biological functions in which your body clears waste, your brain needs to get rid of unwanted material. The more clearly it functions, the more clearly you do.

Now, a neuroscience study suggests that of all sleep positions, one is most helpful when it comes to efficiently cleaning out waste from the brain: sleeping on your side.

The study, published in the Journal of Neuroscience, used dynamic contrast-enhanced MRI to image the brain's "glymphatic pathway." This is the system by which cerebrospinal fluid filters through the brain and swaps with interstitial fluid (the fluid around all other cells in the body).

The exchange of the two fluids is what allows the brain to eliminate accumulated waste products, such as amyloid beta and tau proteins. What are such waste chemicals associated with? Among other conditions, Alzheimer's and Parkinson's.

"It is interesting that the lateral [side] sleep position is already the most popular in humans and most animals--even in the wild," said University of Rochester's Maiken Nedergaard. "It appears that we have adapted the lateral sleep position to most efficiently clear our brain of the metabolic waste products that build up while we are awake."

Read More: Brain Science Suggests This Is the Best Position to Sleep In

Rochester Research Cited in Psychology Today Article

Monday, May 14, 2018

Work in the Schieber lab by Marc Schieber and Kevin Mazurek was included in "The Sensory Revolution" in Psychology Today.

Our senses are under constant threat from the stimuli, routines, and ailments of the modern world. Fortunately, neuroscience is inspiring remedies that not only restore sensory input but radically alter it.

Sometimes sensation makes its way to the brain but doesn't alter behavior because the brain's wiring fails, as in stroke or localized brain damage. Neuroscientists Marc Schieber and Kevin Mazurek, both at the University of Rochester, have demonstrated a method that might bypass these downed lines. They've trained two monkeys to perform four instructed actions, such as turning a knob or pressing a button. But that instruction takes the form of an electrical signal sent to electrodes in the monkeys' premotor cortex, an area between the sensory cortices and the motor cortex, which controls muscle movement. Even without any sensory instruction, the monkeys were nearly 100 percent accurate at interpreting the signal and performing the correct action.

Read More: Rochester Research Cited in Psychology Today Article

Words from Wallis Hall: The University's Neuroscience Network

Friday, May 11, 2018

University president Richard Feldman in the latest Words from Wallis Hall has recognized the efforts of the Del Monte Institute for Neurosciences in making Rochester a leader in the field of neuroscience.

"The Del Monte Institute for Neuroscience has been instrumental in bringing together neuroscience and related research at the Medical Center and the River Campus. That interdisciplinary work and our history in the field have helped make Rochester an important player in neuroscience, and have helped sharpen our focus and further critical research into Alzheimer’s and intellectual and developmental disabilities such as autism and dyslexia," says Feldman.

Read More: Words from Wallis Hall: The University's Neuroscience Network

Schieber lab publishes paper in Journal of Neuroscience

Wednesday, May 2, 2018

Kevin Mazurek, Adam Rouse, and Marc Schieber published a manuscript in the Journal of Neuroscience on May 2, 2018 entitled "Mirror Neuron Populations Represent Sequences of Behavioral Epochs During Both Execution and Observation"

Read More: Schieber lab publishes paper in Journal of Neuroscience

Liz Romanski Awarded R21 from NIDCD

Tuesday, May 1, 2018

The Romanski lab has been awarded an R21 grant from the NIDCD entitled, "Audiovisual Processing in Temporal-Prefrontal Circuits."

Congratulation Liz!

Neuroscience Lab Holds ‘Brain Day’ at Local School

Monday, April 30, 2018

 Last Friday, staff from the Del Monte Neuroscience Institute’s Cognitive Neurophysiology Laboratory (CNL) spent the afternoon at the Hope Hall School explaining the mysteries of the human brain and exposing students to careers in STEM fields.

The Hope Hall School, located in Gates, serves students with special learning needs in grades 2 through 12 from school districts across the greater Rochester area. Similar events at other schools in the area are being planned by the CNL staff.

Read More: Neuroscience Lab Holds ‘Brain Day’ at Local School

Neuroscience Graduate Student publishes paper with the Briggs lab

Friday, April 27, 2018

Neuroscience Graduate student Allison Murphy co-authored a paper with the Briggs lab while in a rotation with the lab.  Allison contributed an extensive amount of work toward the paper during her fall rotation, and the paper was accepted shortly after her joining the lab.

Postdoctoral fellow, Mike Hasse was the first author on the paper, "Morphological heterogeneity among corticogeniculate neurons in ferrets: quantification and comparison with a previous report in macaque monkeys."

Nice work Allison and Mike!!

Read More: Neuroscience Graduate Student publishes paper with the Briggs lab

Krishnan Padmanabhan Recognized as a Polak Young Investigator

Tuesday, April 24, 2018

Krishnan Padmanabhan, PhD was recently awarded one of the 2018 Polak Young Investigator Awards by the Association for Chemoreception Sciences (AChemS).

The purpose of this award is to encourage and recognize innovative research at the annual conference by young investigators. The Incoming Program Chair, with help from the Program Committee will select 5-6 young investigators based upon the scientific merit of their abstract submission. Each selected investigator will deliver an oral slide presentation during the AChemS meeting (or satellite conference). The abstract will be organized within the program-at-large by scientific topic and presenters will be recognized as Polak Young Investigators during the introduction of their presentations by the session chair or the abstracts may be presented in one awards session.Krishnan Padmanabhan talk for the Polak Young Scientist Award

Congratulations Dr. Padmanabhan!!

Read More: Krishnan Padmanabhan Recognized as a Polak Young Investigator

Neuroscience Graduate Student Awarded Messersmith Dissertation Fellowship for 2018-2019

Monday, April 23, 2018

Jessica Hogestyn

Jessica Hogestyn, a PhD candidate in the Neuroscience Graduate Program has been awarded a $23,000 Messersmith Dissertation Fellowship for 2018-2019.  The Messersmith Fellowship is a competitive one-year fellowship for students in the pre-clinical departments of the School of Medicine and Dentistry or in Biology, Chemistry, Optics or Physics. Appropriate candidates have passed the qualifying exam and are in the process of writing their dissertations or are at least engaged in full-time research.

Congratulations Jessie!!

Neuroscience Graduate Student Receives American Heart Association Pre-Doctoral Fellowship

Monday, April 23, 2018

Kathleen Gates

Kathleen Gates has been awarded an American Heart Association Predoctoral Fellowship.  This fellowship is meant to enhance the integrated research and clinical training of promising students who are matriculated in pre-doctoral or clinical health professional degree training programs and who intend careers as scientists, physician-scientists or other clinician-scientists, or related careers aimed at improving global cardiovascular health.

Congratulations Kathleen!!

Martina Poletti Awarded University Furth Fund

Friday, April 13, 2018

The Furth Fund, established through the generosity of Valerie and Frank Furth, provides early career scientists with $10,000 in research funds. The funds are used to promote the research activities of the faculty member, which may include the purchase of new equipment or support for graduate students or postdocs.

Dr. Poletti studies the “finely orchestrated interplay between sensory processing, the control of motor behavior, and the allocation of attentional resources” in enabling visual perception, with a particular interest in fine spatial vision processes in the foveola. This is a small high-acuity region of the retina that humans use to inspect objects of interest. Foveal vision is fundamental for normal functioning, yet surprisingly little is known about its mechanisms.

Poletti “strongly exemplifies the highest professional qualities of a junior, tenure track faculty member: productive, innovative researcher with an early and strong publication track record in highly competitive and visible journals; and, highly-competitive grant funding,” says John Foxe, director of the Ernest J. Del Monte Institute for Neuroscience and chair of neuroscience. “Her background and research on human visual perception, attention, and oculomotor control enrich the Department of Neuroscience and complement well the research programs of fellow faculty members.”

Congratulations Martina!!

Neuroscience Graduate Student Kathryn-Mary Wakim one of Eight Finalists in the Three Minute Thesis Competition

Friday, April 6, 2018

Communicating research with three minutes and a slide

At a time when it is more important than ever for scientists to communicate clearly with the public, eight University PhD students and postdocs will do their best to summarize their research with just three minutes and a slide.

They are finalists in the University’s annual Three Minute Thesis competition, which will be held at 4 p.m., next Thursday, April 12, in the Class of ’62 Auditorium at the Medical Center.

A total of 44 students initially entered the competition, which was founded at University of Queensland, and is now in its third year at Rochester. The eight finalists are:

  • Jillian Ramos (biology)
  • Derek Crowe (genetics, development, and stem cells)
  • Parker Riley (computer science)
  • Robert Maynard (cellular biology of disease)
  • Marian Ackun-Farmmer (biomedical engineering)
  • Lauren VanGelder (chemistry)
  • Simeon Abiola (translational biomedical science)
  • Kathryn-Mary Wakim (neuroscience)

The winner will receive a $750 research travel award. There are also $500 and $200 research travel awards, respectively, for the runner-up and the people’s choice winner.

Congratulations Kamy on reaching the finals!!!

Read More: Neuroscience Graduate Student Kathryn-Mary Wakim one of Eight Finalists in the Three Minute Thesis Competition

Professor Studies Complex Brain Networks Involved in Vision

Monday, March 12, 2018

Our brains are made up of an intricate network of neurons. Understanding the complex neuronal circuits—the connections of these neurons—is important in understanding how our brains process visual information.

Farran Briggs, a new associate professor of neuroscience and of brain and cognitive sciences at the University of Rochester, studies neuronal circuits in the brain’s vision system and how attention affects the brain’s ability to process visual information.

Previously a professor at the Geisel School of Medicine at Dartmouth, Briggs became interested in neuroscience in high school. “I took a class and just became really fascinated by the brain and how it works,” she says. Today, her research on the fundamental levels of vision may provide new insight on impairments associated with attention deficit disorders.

Read More: Professor Studies Complex Brain Networks Involved in Vision

Biological Sex Tweaks Nervous System Networks, Plays Role in Shaping Behavior

Thursday, March 8, 2018

By Mark Michaud

New research published today in the journal Current Biology demonstrates how biological sex can modify communication between nerve cells and generate different responses in males and females to the same stimulus. The findings could new shed light on the genetic underpinnings of sex differences in neural development, behavior, and susceptibility to diseases.

“While the nervous systems of males and females are virtually identical, we know that there is a sex bias in how many neurological diseases manifest themselves, that biological sex can influence behavior in animals, and that some of these differences are likely to be biologically driven,” said Douglas Portman, Ph.D., an associate professor in the Departments of Biomedical Genetics, Neuroscience, and the Center for Neurotherapeutics Discovery at the University of Rochester Medical Center (URMC) and lead author of the study. “This study demonstrates a connection between biological sex and the control and function of neural circuits and that these different sex-dependent configurations can modify behavior.”

The findings were made in experiments involving the nematode C. elegans, a microscopic roundworm that has long been used by researchers to understand fundamental mechanisms in biology. Many of the discoveries made using these worms apply throughout the animal kingdom and this research has led to a broader understanding of human biology. In fact, three Nobel Prizes in medicine and chemistry have been awarded for discoveries involving C. elegans.

The study focuses on the different behaviors of male and female worms. There are two sexes of C. elegans, males and hermaphrodites. Although the hermaphrodites are able to self-fertilize, they are also mating partners for males, and are considered to be modified females.

The behavior of C. elegans is driven by sensory cues, primarily smell and taste, which are used by the worms to navigate their environment and communicate with each other. Female worms secrete a pheromone that is known to attract males who are drawn by this signal in search of a mate. Other females, however, are repelled by the same pheromone. It is not entirely understood why, but scientists speculate that that the pheromone signals to females to avoid areas where there may be too much competition.

Read More: Biological Sex Tweaks Nervous System Networks, Plays Role in Shaping Behavior

Brain Signal Indicates When You Understand What You’ve Been Told

Friday, February 23, 2018

Photo of EEG cap

During everyday interactions, people routinely speak at rates of 120 to 200 words per minute. For a listener to understand speech at these rates – and not lose track of the conversation – the brain must comprehend the meaning of each of these words very rapidly.

“That we can do this so easily is an amazing feat of the human brain – especially given that the meaning of words can vary greatly depending on the context,” says Edmund Lalor, associate professor of biomedical engineering and neuroscience at the University of Rochester and Trinity College Dublin. “For example, ‘I saw a bat flying overhead last night’ versus ‘the baseball player hit a home run with his favorite bat.’”

Now, researchers in Lalor’s lab have identified a brain signal that indicates whether a person is indeed comprehending what others are saying – and have shown they can track the signal using relatively inexpensive EEG (electroencephalography) readings taken on a person’s scalp.

Read More: Brain Signal Indicates When You Understand What You’ve Been Told

Congratulations to the Brain Awareness Campaign volunteers for hosting another successful Brain Bee on Saturday, February 3rd!

Friday, February 23, 2018

Great job Nicole Peltier, Jessie Hogestyn, Josh Hinkle, Carol Jew, Alyssa Kersey, Heather Natola and Neal Shah.

The contestants were 10 students from 5 Rochester area schools including Franklin, Brighton, Brockport, Fairport and Rush-Henrietta High Schools. This year’s Rochester Brain Bee Winner is Brian Lin, an 11th grader from Brighton High School. A grant from the Society for Neuroscience to the Rochester SFN Chapter will provide funds for Brian to attend the National Brain Bee in Baltimore, MD next month.

Thank you also to the judges and to the local area businesses who donated funds for supplies, refreshments and prizes for all the contestants.

Drinking Alcohol Tied To Long Life In New Study

Thursday, February 22, 2018

Drinking could help you live longer—that's the good news for happy-hour enthusiasts from a study presented last week at the annual meeting of the American Association for the Advancement of Science. According to the study, people who live to 90 or older often drink moderately.

Neurologist Claudia Kawas and her team at the University of California, Irvine, have been studying the habits of people who live until their 90s since 2003. There’s a paltry amount of research on the oldest-old group, defined as 85 and older by the Social Security Administration, and Kawas wanted to delve into the lifestyle habits of those who live past 90. She began asking about dietary habits, medical history and daily activities via survey, wondering if such data could help identify trends among these who lived longest. Ultimately she gathered information on the habits of 1,700 people between the ages of 90-99.

In general, research on alcohol has shown mixed results. A recent study published in Scientific Reports showed that drinking might help clear toxins from the brain. The study was conducted on mice, who were given the human equivalent of two and a half alcoholic beverages.

Dr. Maiken Nedergaard of the University of Rochester Medical Center told Newsweek at the time that alcohol did have real health benefits. “Except for a few types of cancer, including unfortunately breast cancer, alcohol is good for almost everything,” Nedergaard said.

Read More: Drinking Alcohol Tied To Long Life In New Study

New Issue of Opportunities to Explore - February 12-16, 2018

Friday, February 9, 2018

This week there is a workshop on Navigating a career fair/expo, the PDA monthly meeting, a career expo on river campus and workshops from Future Faculty, CIRTL and GWIS. The week ends with a PONS luncheon and a Thinkers and Drinkers meeting

Looking further ahead, Stephen Tajc provides a look at his career in URBEST's series. Workshops on job descriptions and handling difficult conversations are available and CIRTL provides several events throughout the month. All this and more in the latest issue of OTE!

Latest Issue of Opportunities to Explore - February 12-16, 2018

New Edition of Opportunities to Explore - February 5-9, 2018

Monday, February 5, 2018

This weeks events in opportunities to explore there is a career event for postdocs, a faculty development workshop about teaching and learning in a digital age, a career story by Teresa Long and information on leveraging linked in. The week is rounded out by the second interview weekend at SMD and the PDA winter social.

Take a look at the weeks events and even more events further out in the latest issue

Opportunities to Explore, February 5-9, 2018

In Wine, There’s Health: Low Levels of Alcohol Good for the Brain

Friday, February 2, 2018

By Mark Michaud

While a couple of glasses of wine can help clear the mind after a busy day, new research shows that it may actually help clean the mind as well. The new study, which appears in the journal Scientific Reports, shows that low levels of alcohol consumption tamp down inflammation and helps the brain clear away toxins, including those associated with Alzheimer’s disease.

“Prolonged intake of excessive amounts of ethanol is known to have adverse effects on the central nervous system,” said Maiken Nedergaard, M.D., D.M.Sc., co-director of the Center for Translational Neuromedicine at the University of Rochester Medical Center (URMC) and lead author of the study. “However, in this study we have shown for the first time that low doses of alcohol are potentially beneficial to brain health, namely it improves the brain’s ability to remove waste.”

The finding adds to a growing body of research that point to the health benefits of low doses of alcohol. While excessive consumption of alcohol is a well-documented health hazard, many studies have linked lower levels of drinking with a reduced risk of cardiovascular diseases as well as a number of cancers.

Read More: In Wine, There’s Health: Low Levels of Alcohol Good for the Brain

Lungs Mays Hold Key to Thwarting Brain Damage after a Stroke

Wednesday, January 31, 2018

By Mark Michaud

The harm caused by a stroke can be exacerbated when immune cells rush to the brain an inadvertently make the situation worse. Researchers at the University of Rochester Medical Center (URMC) are studying new ways to head off this second wave of brain damage by using the lungs to moderate the immune system’s response.

“It has become increasingly clear that lungs serve as an important regulator of the body’s immune system and could serve as a target for therapies that can mitigate the secondary damage that occurs in stroke,” said URMC neurologist Marc Halterman, M.D., Ph.D. “We are exploring a number of drugs that could help suppress the immune response during these non-infection events and provide protection to the brain and other organs.”

Halterman’s lab, which is part of the Center for NeuroTherapeutics Discovery, has been investigating domino effect that occurs after cardiac arrest. When blood circulation is interrupted, the integrity of our intestines becomes compromised, releasing bacteria that reside in the gut into the blood stream. This prompts a massive immune response which can cause systemic inflammation, making a bad situation worse.

While looking at mouse models of stroke, his lab observed that a similar phenomenon occurs. During a stroke blood vessels in the brain leak and the proteins that comprise the wreckage of damaged neurons and glia cells in the brain make their way into blood stream. The immune system, which is not used to seeing these proteins in circulation, responds to these damage-associated molecular patterns and ramps up to respond. Mobilized immune cells make their way into the brain and, finding no infection, nevertheless trigger inflammation and attack healthy tissue, compounding the damage.

The culprit in this system-wide immune response is neutrophils, a white cell in the blood system that serves as the shock troops of the body’s immune system. Because our entire blood supply constantly circulates through the lungs, the organ serves as an important way station for neutrophils. It is here that the cells are often primed and instructed to go search for new infections. The activated neutrophils can also cause inflammation in the lungs, which Halterman suspects may be mistakenly identified as post-stroke pneumonia. The damage caused by activated neutrophils can also spread to other organs including the kidneys, and liver.

Read More: Lungs Mays Hold Key to Thwarting Brain Damage after a Stroke

New Issue of Opportunities to Explore

Thursday, January 25, 2018

This week in Opportunities to Explore there is the future faculty workshop, a benefit play for humans for education, the grand gesture with URBEST and finally the Graduate Student Society Gala, being held at the Hilton Garden Inn.

Looking further out, there are workshops on online teaching, linked in, help with career fairs and more. Teresa Long, MS will be sharing her career story. There are employment opportunities, conferences and programs to apply/register for.

New Issue of Opportunities to Explore – January 29-February 2, 2018

Ross Maddox Presents: When ears aren't enough: how your eyes help you listen

Wednesday, January 24, 2018

Ross will be talking to the public about audio-visual integration in San Diego! His talk is entitled: "When ears aren't enough: how your eyes help you listen." Feb 9 at 5 PM.

Read More: Ross Maddox Presents: When ears aren't enough: how your eyes help you listen

New Issue of Opportunities to Explore – January 22-January 26, 2018

Friday, January 19, 2018

The latest issue of Opportunities to Explore is out!

This issue of OTE is packed with events. There are workshops for investing and Job searches, with a anti human trafficking conference rounding out the week. further into the issue you will find information on career focused events, teaching, research, mentoring and more!

Check out new employment opportunities available at AMRI and Cardiocore.

New Issue of Opportunities to Explore – January 22-January 26, 2018

NINDS Names Dr. Nina Schor as Deputy Director

Wednesday, January 17, 2018

Photo of Nina Schor

The National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH), has named pediatric neurologist Nina Schor, M.D., Ph.D. as Deputy Director. Dr. Schor is expected to join the NINDS in January.

Dr. Schor’s experience running a large university department and children’s hospital, along with her extensive basic research background and clinical work, make her an ideal candidate for this position,” said Walter Koroshetz, M.D., NINDS director. “We are delighted to welcome Dr. Schor and look forward to working with her to advance the NINDS’ mission as it relates to neuroscience and neurological disease research.”

Read More: NINDS Names Dr. Nina Schor as Deputy Director

New Issue of Opportunities to Explore – January 15-January 19, 2018

Friday, January 12, 2018

The latest issue of Opportunities to Explore is out!

The first of two SMD Interview Weekends starts on Thursday, January 18th.

SMD graduate students and postdoctoral associates are invited to attend a special guest day for the University of Rochester’s Toastmasters Club, Daybreakers, on Thursday, January 18th.

Check out new employment opportunities available in Western New York at AMRI.

New Issue of Opportunities to Explore – January 15-January 19, 2018

The Art of Science: Grad Student Finds Inspiration in Images of the Brain

Friday, January 12, 2018

Stowell Brain Painting

The complex biology, networks, and symphony of signals that underlie human cognition are a font of endless mystery and wonder to those who study it.  For Rianne Stowell, a graduate student in the lab of URMC neuroscientist Ania Majewska, Ph.D., these questions are also a source of artistic inspiration which has led to the creation of striking paintings of the brain’s inner workings.

Stowell’s most recent creation (above) is based on research which has recently been published in the journal Developmental Neurobiology and sheds new light on the role that immune cells called microglia play in wiring and rewiring the connections between nerve cells.

Stowell recalls wanting to pursue a career in art as far back as elementary school in Pennsylvania and while she carried that desire with her to Moravian College, she also began to explore other academic fields. Her interest in biology and psychology attracted her to a degree in neuroscience and that decision ultimately led her to the University of Rochester School of Medicine and Dentistry, where she is in now in her fourth year of graduate studies in pursuit of her Ph.D. in neuroscience.

Read More: The Art of Science: Grad Student Finds Inspiration in Images of the Brain