Neuroscientists at the University of Rochester Medical Center want to find out whether older adults who struggle to do both at once might be at risk for Alzheimer's disease.
The researchers recently started using motion capture technology — what's used to get the realistic movements in sports video games — and recording brain activity to see at what point communication from the brain to the muscles breaks down. They want to know what that means for someone still trying to function in the everyday world.
The technology can be applied to autism, traumatic brain injury, concussion, attention deficit hyperactivity disorder or Parkinson's disease. Right now, the focus is Alzheimer's, which is the sixth leading cause of death nationwide. According to a 2017 report from the state Department of Health, nearly 400,000 New Yorkers had Alzheimer's disease. The figure was expected to be 460,000 by 2025. There is no cure for the disease, but the goal of researchers is to predict who might be at risk so that treatments start earlier and slow the progression of Alzheimer's.
Researchers in the Ernest J. Del Monte Institute for Neuroscience are enrolling three groups of older adults — those who are healthy, those with cognitive impairment and those with Alzheimer's — to determine whether they can predict someone's risk of developing the disease. At some point, the technology could be used to track the effectiveness of treatment.
Moving targets
Most brain activity is measured when a person is still — either lying in an MRI tube or sitting in chair.
"That's not what human beings do most of the time," said John Foxe, director of the Del Monte Institute for Neuroscience. "We like to think that people will get up and move around, and of course that's when people run into problems."
He gave the examples of someone with Alzheimer's who gets lost, a child with autism who has poor motor skills or a person who had a stroke and can't walk. "A lot of the things that happen to people because of brain dysfunction happen to them while they're walking around and trying to do stuff."
He said researchers have been working on new ways to image and record brain activity to see where things go wrong, and what can be done about it. Hence, the brain stress test of walking and doing a mental task at the same time.
Foxe said the Cognitive Neurophysiology Lab of the Del Monte Institute is one of few labs in the world using mobile brain/body imaging, called MoBI. The lab receives funding from the National Institutes of Health, and the technology is open source, meaning URMC researchers will share it with scientists elsewhere.
Over the past 10 years, URMC has been involved in 86 research projects into understanding, diagnosing and treating Alzheimer's, according to the university. Total funding for the projects exceeded $33 million.
Two things at once
Current MSTP (MD/PhD) student, David Richardson, who works with study volunteers, cited scientific literature when he said people with Alzheimer's can struggle with doing a physical and cognitive task at the same time.
"What happens if you ask somebody with Alzheimer's to walk and talk?" said Richardson, a medical student and doctoral candidate in the medical scientist training program. "If they want to talk, they stop walking. If they want to walk, they stop talking."
They may do it subconsciously as a way to keep their focus on one task at a time. By asking study participants to do simultaneous physical and mental tasks, the researchers are looking for clues about what happens when a person perceives one of the tasks as difficult.