Skip to main content
menu

News

20222021202020192018

How well can you walk, think at same time? URMC uses ability to predict Alzheimer's risk

Wednesday, November 21, 2018

Neuroscientists at the University of Rochester Medical Center want to find out whether older adults who struggle to do both at once might be at risk for Alzheimer's disease.

The researchers recently started using motion capture technology — what's used to get the realistic movements in sports video games — and recording brain activity to see at what point communication from the brain to the muscles breaks down. They want to know what that means for someone still trying to function in the everyday world.

The technology can be applied to autism, traumatic brain injury, concussion, attention deficit hyperactivity disorder or Parkinson's disease. Right now, the focus is Alzheimer's, which is the sixth leading cause of death nationwide. According to a 2017 report from the state Department of Health, nearly 400,000 New Yorkers had Alzheimer's disease. The figure was expected to be 460,000 by 2025. There is no cure for the disease, but the goal of researchers is to predict who might be at risk so that treatments start earlier and slow the progression of Alzheimer's.

Researchers in the Ernest J. Del Monte Institute for Neuroscience are enrolling three groups of older adults — those who are healthy, those with cognitive impairment and those with Alzheimer's — to determine whether they can predict someone's risk of developing the disease. At some point, the technology could be used to track the effectiveness of treatment.

Moving targets

Most brain activity is measured when a person is still — either lying in an MRI tube or sitting in chair.

"That's not what human beings do most of the time," said John Foxe, director of the Del Monte Institute for Neuroscience. "We like to think that people will get up and move around, and of course that's when people run into problems."

He gave the examples of someone with Alzheimer's who gets lost, a child with autism who has poor motor skills or a person who had a stroke and can't walk. "A lot of the things that happen to people because of brain dysfunction happen to them while they're walking around and trying to do stuff."

He said researchers have been working on new ways to image and record brain activity to see where things go wrong, and what can be done about it. Hence, the brain stress test of walking and doing a mental task at the same time.

Foxe said the Cognitive Neurophysiology Lab of the Del Monte Institute is one of few labs in the world using mobile brain/body imaging, called MoBI. The lab receives funding from the National Institutes of Health, and the technology is open source, meaning URMC researchers will share it with scientists elsewhere.

Over the past 10 years, URMC has been involved in 86 research projects into understanding, diagnosing and treating Alzheimer's, according to the university. Total funding for the projects exceeded $33 million.

Two things at once

Current MSTP (MD/PhD) student, David Richardson, who works with study volunteers, cited scientific literature when he said people with Alzheimer's can struggle with doing a physical and cognitive task at the same time.

"What happens if you ask somebody with Alzheimer's to walk and talk?" said Richardson, a medical student and doctoral candidate in the medical scientist training program. "If they want to talk, they stop walking. If they want to walk, they stop talking."

They may do it subconsciously as a way to keep their focus on one task at a time. By asking study participants to do simultaneous physical and mental tasks, the researchers are looking for clues about what happens when a person perceives one of the tasks as difficult.

Read More: How well can you walk, think at same time? URMC uses ability to predict Alzheimer's risk

MSTP Alum, Alan Kenny Headlines MSTP 18th Annual Retreat

Friday, August 10, 2018

2018 retreat photo

August 10, 2018 marked the Medical Scientist Training Program's 18th Annual Retreat. The retreat was held at the Rochester Yacht Club, overlooking Lake Ontario and the Genesee River.

The Annual Retreat is an opportunity for the entire program to touch base and welcome incoming students. This year, the MSTP welcomed 8 new students: Catherine Beamish, Wash U., Zachary Christensen, UR 2nd year med. (Brigham Young U.), Ankit Dahal (U. Penn), Adam Geber (Columbia U.), Emily Isenstein (Cornell U.), Bryan Redmond (Xavier U.), Alison Roby (Penn St.), Matt Sipple (Cornell U.).

2018 MSTP Incoming Students
2018 MSTP Incoming Students

The Keynote this year ("Iterations of cross-talk direct differentiation in development") was given by former URMC MSTP Student, Alan P. Kenny, MD, PhD, Assistant Professor, Pediatrics (Neonatology) at the University of Cincinnati Children's Hospital, Cincinnati, OH. Dr. Kenny focuses his research on elucidating the molecular mechanisms controlling the earliest stages of respiratory and digestive organ development. Available evidence suggests that early lung, liver, and pancreas lineages develop from a pool of foregut progenitor cells in the ventral endoderm. They are induced by FGF and BMP signals emanating from the cardiogenic mesenchyme during early somite stages of development through a mechanism that is highly conserved among vertebrates.

Following the keynote, the morning science session concluded with several short-format research talks by Mark Kenney(M2, lab rotation, Summer 2018 - Edward Schwarz, PhD), Jonathan Gigas (G1, Vera Gorbunova, PhD), Karl Foley ( G2, Houhui Xia, PhD), Matthew Tanner (G3, Charles Thornton, MD), Colleen Schneider (G4, Bradford Mahon, PhD), and Evan McConnell, PhD (M3, Maiken Nedergaard, DMD, PhD).

After lunch, the program convened for a business meeting. Attendees of the Keystone MD/PhD Student Conference and the Class Council representative for American Physician Scientist Association (ASPA) reported on their trips to annual meetings and upcoming events. New Student Council members were elected at the end of the afternoon.

After closing the meeting, MD/PhD students met for conversation and drinks overlooking the water. Another successful year for the program!

AHA Grants Will Accelerate Search for New Stroke Therapies

Wednesday, June 27, 2018

A series of awards from the American Heart Association (AHA) to a team of researchers at the University of Rochester Medical Center (URMC) will focus on the development of new treatments to thwart the damage in the brain caused by stroke.

One of the research projects brings together experts in stroke, cardiovascular biology, platelet biology, and peptide chemistry. Marc Halterman, M.D., Ph.D., with the URMC Center for Neurotherapeutics Discovery, Scott Cameron, M.D., Ph.D., and Craig Morrell, D.V.M., Ph.D., with the URMC Aab Cardiovascular Research Institute, and Bradley Nilsson, Ph.D., with the University of Rochester Department of Chemistry will focus on the role that platelets play in acute brain injury and inflammation during stroke.

Platelets serve an important role in protecting against blood loss and repairing injured blood vessels. However, during a stroke the inflammatory properties of platelets can interfere with the restoration of blood flow once the clot in the brain is removed, particularly in micro-vessels, which can lead to permanent damage of brain tissue.

The research team will build synthetic peptides that activate platelets to study the phenomenon -- which is called no-reflow -- in an effort to identify specific switches within platelets that can be turned off and limit the cells' inflammatory functions without blocking their ability to prevent bleeding.

Two AHA pre-doctoral fellowship awards Kathleen Gates and Jonathan Bartko in Halterman's lab will support research that examines the link between an immune system response triggered by stroke in the lungs that can exacerbate damage in the brain and investigate the cellular mechanisms that determine whether or not brain cells die following stroke.

A final AHA award to the Halterman lab will seek to identify new drug targets by focusing on specific proteins activated during stroke that are suspected to play an important role in determining the survival of neurons.

Collectively, the AHA Collaborative Sciences Award, Pre-Doctoral, and Innovation awards represent $1.09 million in funding.

Read More: AHA Grants Will Accelerate Search for New Stroke Therapies

Lungs Mays Hold Key to Thwarting Brain Damage after a Stroke

Wednesday, January 31, 2018

By Mark Michaud

The harm caused by a stroke can be exacerbated when immune cells rush to the brain an inadvertently make the situation worse. Researchers at the University of Rochester Medical Center (URMC) are studying new ways to head off this second wave of brain damage by using the lungs to moderate the immune system's response.

"It has become increasingly clear that lungs serve as an important regulator of the body's immune system and could serve as a target for therapies that can mitigate the secondary damage that occurs in stroke," said URMC neurologist Marc Halterman, M.D., Ph.D. "We are exploring a number of drugs that could help suppress the immune response during these non-infection events and provide protection to the brain and other organs."

Halterman's lab, which is part of the Center for NeuroTherapeutics Discovery, has been investigating domino effect that occurs after cardiac arrest. When blood circulation is interrupted, the integrity of our intestines becomes compromised, releasing bacteria that reside in the gut into the blood stream. This prompts a massive immune response which can cause systemic inflammation, making a bad situation worse.

While looking at mouse models of stroke, his lab observed that a similar phenomenon occurs. During a stroke blood vessels in the brain leak and the proteins that comprise the wreckage of damaged neurons and glia cells in the brain make their way into blood stream. The immune system, which is not used to seeing these proteins in circulation, responds to these damage-associated molecular patterns and ramps up to respond. Mobilized immune cells make their way into the brain and, finding no infection, nevertheless trigger inflammation and attack healthy tissue, compounding the damage.

The culprit in this system-wide immune response is neutrophils, a white cell in the blood system that serves as the shock troops of the body's immune system. Because our entire blood supply constantly circulates through the lungs, the organ serves as an important way station for neutrophils. It is here that the cells are often primed and instructed to go search for new infections. The activated neutrophils can also cause inflammation in the lungs, which Halterman suspects may be mistakenly identified as post-stroke pneumonia. The damage caused by activated neutrophils can also spread to other organs including the kidneys, and liver.

Read More: Lungs Mays Hold Key to Thwarting Brain Damage after a Stroke

Andrew Cox Receives US Patent

Tuesday, January 30, 2018

Cox

Andrew Cox

MD/PhD student, Andrew Cox has been awarded a patent, "Attenuated Influenza Vaccines and Uses Thereof" (9,787,032), for a new live flu vaccine that is safer than the current one so should permit higher dose administration to overcome the current problems with the live vaccine.

When not in medical school, Andrew is currently pursuing his degree in the Dewhurst lab, working on temperature sensitivity of Influenza polymerase as a determinant of pathogenicity.

Congratulations Andrew!